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In deformed nuclei two states with Knn = \~ and K2TT2= i+ can couple to form a degenerate doublet with 
projections 0 and 1. We have investigated the effect of the Coriolis force and the spin-dependent residual in
teraction on such states. As a result of these interactions, the rotational bands are strongly mixed, and the 
level ordering becomes quite complicated. For certain K = \ states, the lowest lying members of the rota
tional band resemble the KTT = 0~ bands observed in deformed even nuclei in that the band ordering is 1, 3, 5, 
and the effective moment of inertia is significantly larger than that of the ground-state band. However, such 
bands are usually assigned as Kir = 0~projections of X = 3 (octupole) vibrations. Thus the difference in appear
ance between the bands belonging to collective and two quasiparticle Kir = 0~ base states may in some 
cases be less than previously suspected, and hence definite assignments should require more detailed exper
imental data than the band ordering alone. 

I. INTRODUCTION 

IN even-even nuclei, principally in the regions A ^ 1 5 4 
and A > 226, states of low excitation energy ( < 1 

MeV) with ITT=1~~ are systematically observed. The 
branching ratios of the E l radiations which de-excite 
these levels to the ground and first excited 2 + states, 
when compared with predictions of the collective model, 
have led to their being assigned a K=Q quantum 
number.1 In some cases, states with 1=3 and 7 = 5 are 
observed which follow the rotational 7 (7+1) relation
ship relative to the 1~ states. No even-spin states are 
observed in these bands. The moments of inertia com
puted from the energy level spacing are approximately 
1.7 times those computed for the ground-state bands. 
These facts led to the suggestion that the states are 
K=0 projections of collective octupole (X=3) oscilla
tions.2 Some force is added to this assignment by the 
recent observation of strong electric octupole transitions 
to the 3— states of these bands in Coulomb excitation 
experiments using heavy ion beams,3 and strong excita
tion of the bands in inelastic scattering.4 

Recently an attempt has been made to understand 
the X=3 oscillations from a "microscopic" viewpoint. 
An examination of the wave functions of the K= 0 com
ponent of the octupole vibration shows that in some 
nuclei the amplitudes of the two-quasiparticle compo
nents of the states are very large.5 These calculations 
have led us to consider whether it is possible to repro

duce the properties of the KT=0~ bands, 
they are pure two-quasiparticle excitations. 

II. THEORY 
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Rotational bands based on KTT = 0- levels of X = 3 
oscillations contain no even-spin states if the nucleus is 
axially symmetric. A well-known result is that their 
effective moments of inertia should also appear to be 
larger than those of the ground-state (Kw=0+) band 
through their coupling to the X = 3 oscillation with a 
K=l projection. In contrast, in bands based on Kw 
= 0- two-quasiparticle states, the even-spin states 
exist, and the level ordering and apparent increase of 
the moment of inertia must originate through residual 
interactions. Thus the question we wish to investigate 
is clear: if a KT=0~ band base state is a two-quasi
particle state, can residual interactions reproduce the 
observed level ordering, effective moments of inertia, 
and other properties? In the present paper we discuss 
the results of this investigation. 

Of the many possible residual interactions we shall 
only use those which are known to affect significantly 
the particle spectra in deformed nuclei. The types of 
interaction which are empirically important, at least 
with respect to the basis of the unified model plus 
Nilsson Scheme6"9 are the RPC (rotational particle 
coupling6,10) and the spin-dependent interactions which 
are well established in deformed odd-odd nuclei.11-13 

As a starting point in the analysis we recall that 
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Newby14 has pointed out that in configurations in odd-
odd nuclei in which \£lp—tin\=0, there are, besides the 
usual spin-dependent interactions which lead to the 
removal of the |^p=bOn | degeneracy, additional matrix 
elements of the residual interaction which can cause a 
displacement of even- and odd-spin bands. Several ex
perimental examples of such displacements are known.15 

Newby's results, although derived for odd-odd systems, 
are essentially directly applicable to two-quasiparticle 
states in even-even nuclei. In general, when K>% for 
the two states coupling to form the K=0 band, the 
moments of inertia of the displaced bands should not 
significantly differ from the ground-state band, in 
conflict with the observed results. This rules out the 
possibility that pure states with K>\ produce the ob
served rotational bands. However, a special case of the 
j £ = 0 system occurs when two K=\ particles couple to 
form K=0 and K=l bands. In this case the RPC as 
well as the residual spin-dependent force plays a role, 
leading to the result that the even and odd bands will 
not in general have the same effective moments of 
inertia, and both will differ from that of the ground-
state band. In this case, the magnitude of the difference 
will depend on the decoupling constants of the two 
K=% states, and hence the effective moments of the 
bands will depend on the intrinsic states. Thus it ap
pears qualitatively that the only two-quasiparticle 
K=0 states that might reproduce the effective mo
ments of inertia are those involving the coupling of 
two states with K=%. 

Now if we attempt to relate these considerations to 
the observed Kir=0~ bands, a reasonable assumption 
is that they must involve the coupling of two K=% 
states near the Fermi surface since the experimental 
excitation energies are so low. As a gross check on this 
assumption, consider the Nilsson diagrams9 for the 
region ^4>208 shown in Figs. 1(a) and 1(b) and the 
systematics of IwK=l — 0 states energies shown in 
Table I. Marked on the Nilsson diagram by broadened 
lines are the i £ = J states available. In the proton spec
trum the two states are [530t] and [660 | ] . The [530 | ] 
state is the well-known ground state of the Pa isotopes. 
The state C660|] is never observed as a ground state 
but should be a low-lying excitation. Both states have 
large decoupling factors for finite nuclear deformation. 
Two neutron states, [770 | ] and [64Q|], are also avail
able at considerably greater excitation energy. Thus it 
appears that in Ra and Th, two of the lowest lying 
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FIG. 1(a) Nilsson diagram for the proton orbitals in the region 
Z>82 (A >208). The two K= \ orbitals which can couple to form 
the lowest lying proton two-quasiparticle Kir — 0, 1— doublet in 
the Ra-Th region are indicated by broadened lines. The [530f ] 
state is observed as the ground state of protoactinium. (b) Nilsson 
diagram for the neutron orbitals in the region iV>126 (k>208). 
The two K— \ orbitals which can couple to form the lowest lying 
neutron two-quasiparticle Kir = 0, 1— doublet in the Ra-Th re
gion are indicated by broadened lines. Neither of these states has 
as yet been experimentally found in deformed odd-^4 nuclei. 

two-quasiparticle states should be made up of K—\ 
states coupling to KTT=~-Q~. A similar situation exists 
in the Sm region, where the states [530t] and [660t] 
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occur in the neutron diagram and [550t] and [420 | ] 
in the proton diagram. In the remaining nuclei in both 
regions, however, such configurations have much higher 
excitation energies. These results suggest qualitatively 
that only in the Ra-Th and Sm regions do low-lying 
states exist which might have properties like those 
observed. In the calculations discussed below we at
tempt quantitatively to determine if this could be the 
case. 

A. Energies of Two-Quasiparticle States 

Soloviev has given tables of two-quasiparticle excita
tion energies in the heavy-element region.16 His calcula
tions do not include much of this mass region, however, 
because of the rapidly varying self-consistent-field 
energies in the region of deformed nuclei with lower A. 
Recently some corrections that should be applied to 
his model have been pointed out.17 However, his esti
mates of the unsplit |12i±02 | doublet energies appear 
valid for the observed states18 to within his estimated 
error of 15%, so we have used them for orientation 
purposes. His calculated energies for Kir=Or states 
are greater than 1.5 MeV throughout most of the 
region. A simple unsplit-doublet interpretation of the 
states is clearly inadequate. 

B. Forces Removing the Degeneracy 
of the J£=0, 1 Doublet 

1. The Rotational Hamiltonian and RPC 

We consider an even-even nucleus which contains 
two unpaired like nucleons; all other particles are 
paired in the appropriate Nilsson orbitals. The two 
unpaired particles have intrinsic wavefunctions xK(l) 
and <j)K' (2) where K and K' are the components of particle 
angular momentum along the nuclear symmetry axis, z. 
The parity of the rotational band based on these in
trinsic states is 7r = 7r(l)7r(2). When K = K', we can com
bine these two states to form both a K = 0 and a K~ 2K 
band. The usual rotational wave functions are (for 
total spin / ) 

\I,M,K=0) 
= ((2/+l ) / l6 1 r 2 ) 1 ' 2 E » ' CjDA-y-^u.o1 

X C x ^ ( l ) ^ - / ( 2 ) + ( - ) r - « ' x - / ( l W ( 2 ) ] (1) 
and 

\I,M,K=2K) 

= ( (21+ 1V167T2)1/2 X > C A ' [ X / ( 1 ) < £ / ( 2 ) £ M V 

+ ( ~ ) J - ^ X - K ? " ( 1 ) ^ - / ( 2 ) 3 ^ , - 2 / ] . (2) 

The C's and D's are expansion coefficients, 

Xa= S i Cjxtf, 
16 T. Voros, V. G. Soloviev, and I. Siklos, Joint Institute for 

Nuclear Research Report E-932, Dubna, 1962 (unpublished). 
17 S. G. Nilsson, Nucl. Phys. (to be published). 
18 The data on two-quasiparticle states in the heavy element 

region are extremely sparse. This statement is based on the more 
detailed comparison carried out in the rare-earth region. 

TABLE I. Sy sterna tics of IirK—1— 0 states in 
the region A> 208.a 

Inertial constants ¥/2$ 
Energies of rotational of rotational bands 

Nuclide statesb (keV)c 

R n 2 1 8 

Rn220 

Rn222 

Ra220 

Ra222 

Ra224 

Ra226 

Th224 

Th226 

Th230 

Th232 

•TJ232 

XJ234 

U238 

pu238 

1 -

(800) 
(650) 
(610) 

(410) 
242 
217 
253 

246 
230 
327 
503 

1045 

564 
787 
679 

605 

3 -

(289) 
320 

396 
572 

1095 

630 

724 

5 -

445 

514 

KT = 0~ 

7.2 
6.7 

6.9 
6.9 
5.1 

6.6 

4.5 

Kw=0-

14.1 
11.3 

9.6 
8.8 
8.3 

7.9 

7.5 

a All data as are reported (with references) in the compilation of B. S. 
Dzhelepov, L. K. Peker, and V. O. Sergeev, Academy of Sciences of the 
USSR, 1963 (unpublished). b Parentheses indicate assignments not definitely established. c Calculated from 1 — to 3 — spacing for the Kir =0 — bands and from 
the 0+ to 2+ spacing from the Kir =0 + (ground state) bands. All values 
have been given to nearest tenth of a keV. 

and can be obtained from the Nilsson wave functions. 
Since we are dealing with identical particles, both of 
the above wave functions must be antisymmetric under 
interchange of particles 1 and 2, although, for the sake 
of brevity, this will not be explicitly shown. 

The rotational energy operator is given by 

r r o t= (i/2^)C(/-i i-y2)8- {J-ji-h)n 
+ (l/24B)(J~j1-j2)z>=To+T^p+TRj>Cy (3) 

where 

To= ^/2^ZP+j1"+j^+2j1J2-2Jz(j1+j2)2']J (4a) 

T^p= (1/2*) Ui+J2-+ji-J2+), (4b) 
and 

r R P c = - ( i /2*)[ / + (y i+i2)-+/ - ( i i+ i2)+] . (4c) 

To is the simple rotational energy operator; Tp-P con
tains the rotational particle-particle interaction; TRPO 
is the Coriolis contribution which connects the nuclear 
rotation to the rotation of the individual particles. All 
three operators are diagonal in / . Only Tnvc is capable 
of connecting states of different K under certain 
conditions. 

We calculate the matrix elements of (4a-4b) using 
the wave functions (1) and (2). The results are 

< | r 0 | ) i f M j w = ( l / 2 * ) C / ( / + l ) - 2 / c 2 + ^ + ^ 2 ] , (5a) 

(\To\)i>M,K^^(l/2^lI(I+l)-6^+b1+b2']) (5b) 

(\T^P\)IIM,K^= (l/2£r)5Ktl /2(-)J+1a1a2, (5c) 
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and 

(\Tp^p\)itM,K~.2K~0. (5d) 

In the above, we have used 

6 i = Z y | Q | 2 i ( i + l ) 

and 

a i = - E y ( - ) ' + 1 / 2 ( i + l ) l Q | 2 , 

with similar expressions for b2 and a2. The a's are the 
usual decoupling parameters. The terms involving bi 
and b2 arise from single particle operators which may 
be absorbed in the self-consistent field and will not be 

considered further. The matrix element of Tp^p is 
nonzero only when K=0 and /c= J. 

The only nonzero matrix element of TRPC is 

(I,M,K=0\TKI>C\I,M,K^2K) 

1 
= ««. i / 2 ( / ( /+ l ) ) 1 / 2 C«2+(-) 7 + 1 «i] . (6) 

24 

TRPC is off-diagonal in K; it contributes only when 
K=\ and mixes the resulting K=0 and K= 1 bands. If 
the total Hamiltonian were given by TTOt alone, then 
the energy levels could be obtained by diagonalizing 
the symmetric 2X2 matrix, 

2 4 £ -
/ [ / ( / + l ) - 2 ^ - $ , 4 / 2 ( - ) ' a i a 2 ] ~8K)i/2(I(I+l))W£a2-(-ya1']> 

\ 

One must also include the effect of the residual particle-
particle interaction which would be different for the 
two bands. Only the contribution due to the two un
paired particles must be included. Before considering 
this additional complication, a few remarks regarding 
Eq. (7) are in order. 

Since the spectrum of any band is limited by the 
condition I>K, there will be only one level for each 
integral / , 0<I<2K. Each of these will correspond to 
K=0 and is given by Eqs. (5a) and (5c) (En of our 
matrix). Even for I>2K, the matrix of Eq. (7) will be 
diagonal unless K = \ ( 2 K = 1 ) . Band mixing via RPC 
arises only in the latter case when we have K=0 and 
K= 1 bands. This is precisely the situation which we 
wish to investigate since the strong repulsion of energy 
levels is capable of appreciably altering the effective 
moment of inertia. 

2. The Residual Interaction 

As a residual interaction, we choose 

V=aseVse+atoVto, 
where 

and 

F s e=|( l+PM)(l-cr i -cF 2 )F 8 e ( r i2) , 

Fto = i ( l - i ? i f ) ( 3 + (Ti.Or2)Fto(fl2). 

(8) 

(9a) 

(9b) 

PM is the two-particle space-exchange operator. The 
subscript se (to) refers to the singlet-even (triplet-odd) 
projection operator which is explicitly shown in Eq. (9). 
Singlet-odd and triplet-even operators do not enter 
since our wave functions are totally antisymmetric. 
Matrix elements of V taken between rotational states 
conserve both I and K. Such an interaction con
tributes only to the diagonal terms in Eq. (7). 

The matrix elements of V may be written as 

[ 7 ( / + l ) - 6 « 2 ] 
(7) 

and 
(\V\)l,K-2K = <xJifo+atoM3 (10b) 

The + ( — ) sign is used in Eq. (10a) when I is even 
(odd). Expressions for the A's, B's, and M's are given 
in the Appendix. 

Since the available experimental data are so sparse, 
there is little point in varying parameters so as to 
obtain a best fit. We choose instead to fix our param
eters at reasonable values and see where our model 
leads us. For simplicity, we take V to be Gaussian 
[ F ^ e x p ( —r2/X2)]. Consequently, we have a model 
with five parameters: ase and ato, interaction strengths; 
Xse and Xt0, characteristic distances of interaction; and 
vy the harmonic-oscillator length parameter used in 
obtaining radial shell-model wave functions. 

For the interaction, we employ the parameters of 
the Gaussian n-n potential used by True and Ford, 
a a e=.-32.S MeV, ato=0, and Xse= 1.85F.19 These same 
authors also obtain an estimate for v based on a classical 
turning-point argument, 

, 2 =i? 2 / (2 / m a x +3) , (11) 

where i^ l .2^4 1 / 3 (F) , and /max is the largest orbital 
angular-momentum state which is occupied. 

III. RESULTS 

A. Heavy Element Region 

1. Proton Orbitals 

The proton orbitals (6601) and (530f) form the only 
low-lying Kir=0~ state of interest in the Ra-Th region. 
Both particles have K = J and can form bands with 
K=Q and K=l. All bands based on these states will 
have odd parity. Using yl = 226 and / m a x = 6 , we obtain 
?>=1.88F. The parameters v and X enter only in the 
combination £*= (^/X)2, which in our example has the 

(| V\ )r,K=o:=o>se(Ao±BQ)+ato(AszLB3) (10a) 19 \y. True and K. Ford, Phys. Rev. 109, 1675 (1958). 
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value f=1.04. These parameters have been used to 
calculate the level spectrum for various values of 
nuclear distortion, TJ== 2, 4, and 6. For the case T? = 4 , 
we obtain 

i o = 0.0075, B0=0.0071, M0=0.0059, 

i 3 = 0 . 0 1 3 4 , 5 3 = 0.0026, M 3=0.0137. 

The matrix elements of the residual interaction are 

< |F |>Zevea .* -0=- 14 keV , 

<|Fl)r0dd,K=o = - 4 7 4 k e V , 

and 

< | F | > i , x - i = - 1 9 1 k e V . 

Thus the main effect of the residual interaction is to 
depress the odd / states of the K=0 band relative to 
all other levels. Using the level spacing of the ground 
state K=0 band of Ra226, we obtain a value for the 
inertial constant, 

(1/2*) = 11.27 keV. 

If this same constant is used for the two-particle ex
cited state, we are now in a position to diagonalize the 
total energy matrix (rotational plus interaction). The 
lowest levels have 1=1, 3, and 5 in that order. From a 
simple rotational model we would expect Ej^I (7+1) 
or 

(Eb-E1)/(Ez-E1)=(30-2)/(12~2) = 2.8. 

This should be compared with a value of 2.89 obtained 
from our model. 

if our energy levels are interpreted as a simple rota
tional band, the effective inertial constant is 

(1/24) = 8.19 keV, 

about § of the corresponding quantity for the ground-
state band.20 Also one should notice that the low lying 
1=1, 3, and 5 levels are predominantly composed of 
K=0 components (98, 94, and 87%, respectively) 
which might lead to their identification as a K=Q band 
by virtue of their gamma branching ratios. The next 
state in the spectrum is not the usually expected 1=1 
level, but rather 1 = 4, followed by 1=2 and 6. These 
states are predominantly K= 1 (70, 81, and 64%). 

Similar results have been obtained for other values 
of 7). The corresponding spectra are plotted as a func
tion of t\ in Fig. 2. (A similar plot for the case of no 

20 In order to obtain a better estimate for the moment of inertia 
of the two-quasiparticle state, we should probably have used the 
empirical fact that for two-quasiparticle states in deformed even-
even nuclei the moments of inertia, £fee(2), seem to be best fitted 
by the relationship &e(O)<0ee(2)<0ee(O)+A£i+A02. In this ex
pression tfee(0) is the moment of inertia of the ground-state rota
tional band and Atfi and A#2 are the incremental moments re
sulting from the odd-particle motion (see Ref. 9). Since roughly 
k$~nz (nz is the number of nodes along the axis of symmetry 
of the odd-particle state), and nz is large for all the K~i states of 
interest here, we can quite reasonably|expect that the effective 
moments of inertia of these bands should be considerably larger 
than we have calculated assuming 4e(2) =#ee(0). 

woof 

800+ 

600+ 

200 
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10 

FIG. 2. Energy spectrum versus deformation rj for proton states 
[6601] and [530| j . The parameters characterizing the residual 
interaction are ase— — 32.5 MeV and £ = 1.04. Energies are shown 
relative to the lowest I-K = 1 — state. The position of the unsplit 
doublet is indicated by the dashed line. 

residual interaction is given in Fig. 3.) The low-lying 
states (1=1,3, 5) maintain the same ordering and 
roughly the same spacing throughout the range of dis
tortions considered (2<?7<6). The ratio (E5~Ei)/ 
(E3—E1) varies from 2.84 at r\= 2 to 2.96 at rj = 6, which 
again should be compared with the simple rotational 
value 2.80. The corresponding inertial constants are 
9.1 and 7.3 keV, approximately 0.81 and 0.64 times the 
corresponding quantity for the ground-state band 
(11.27 keV). 

Contrary to the remarkable stability of the low-lying 
states with respect to variation of rj is the sensitivity 
of ordering of higher states. The important point here 
is not the definite order for any particular value of t), 
but rather that even-spin states and one additional 
1=1 state make their appearance at relatively low 
excitations (£/—Ei<0.5 MeV). Whereas the three 
lowest states would be experimentally determined as 
KT=0~, these higher states (except for 1=1) would 
be largely Kw= 1~. 

The dependence on f has also been investigated. 
Calculations were performed for the range 0 . 8 < f < 1 . 3 
(f = 1.04 was used for the previous part of the calcula
tion). The predominantly K=0 odd spin states are 
relatively unaffected by small changes in f; their 
energies relative to the lowest 1=1 state fluctuate by 
about 10% over the range in question. The positions 
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FIG. 3. Energy spectrum versus deformation r\ for proton states 
[660|] and [5301J. No residual interaction has been included. 
Energies are shown relative to the lowest ITT — 1 — state. The 
position of the unsplit doublet is indicated by the dashed line. 

of the other levels depend much more sensitively on f 
since their location is determined largely by the re
sidual interaction. 

By increasing the strength (ase) of the residual inter
action, we increase proportionately the K=0, K=l 
splitting which significantly affects band mixing. If, 
however, one correspondingly reduces the range of the 
potential (e.g., keeping the volume integral of the 
potential constant), then the spectra are not signifi
cantly affected. Small admixtures of a triplet-odd re
sidual interaction do not change the qualitative results 
of this section. 

2. Neutron Orbitals 

The spectrum which is obtained when using the 
neutron states [6401] and [7701] is illustrated in 
Fig. 4. The same interaction parameters have been 
employed as for the previous discussion and f=0.914. 
Since the decoupling parameters of these two states 
both have the same sign, they tend to depress the even 
/ states below those of odd / . (Also the Coriolis inter
action is strongest for even I) This works against V 
which tries to depress I odd relative to I even.21 The 

21 In the previous case of two unpaired proton states, the states 

bands are so thoroughly mixed that for TJ = 4: the lowest 
state has 7 = 5. These intrinsic states seem entirely 
incapable of producing the desired spectrum. 

B. Rare-Earth Region 

L Proton Orbitals 

We have investigated the proton states [5501] and 
[4201]. Using f=0 .91 , we have calculated the energy 
levels as a function of deformation (Fig. 5). The result 
is similar to that obtained for the two-proton state of 
the Ra region. The lowest lying states have 1=1, 3, 
and 5, respectively, all predominantly with K=0. At 
excitations of about 600 keV relative to the IT=1~ 
level, even-spin states begin to make their appearance. 
The spacing of the low-lying odd-spin states is again 
compressed yielding an inertial constant which is about 
one-half of that found for the ground-state band 
( 1 / 2 4 - 2 0 keV). 

2. Neutron Orbitals 

The neutron states in this region are the states 
[6601] and [530f], which are the proton orbitals in 
the heavy element region. Although the parameters of 
the Nilsson scheme change between the two regions, 

600-
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> + 
UJ 

0,2 

2 4 6 
V 

FIG. 4. Energy spectrum versus deformation rj for neutron 
states [6401] and [7701]. The parameters characterizing the 
residual interaction are ase=— 32.5 MeV and f = 0.914. Energies 
are shown relative to the lowest I-n- — 1 — state. The position of the 
unsplit doublet is indicated by the dashed line. 

had decoupling parameters of opposite sign so that both the 
Coriolis and residual interactions tend to lower the states with 
odd / . 
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FIG. 5. Energy spectrum versus deformation ^ for proton states 

[550|] and [420f]. The parameters characterizing the residual 
interaction are ase = —32.5 MeV and £* = 0.91. Energies are shown 
relative to the lowest IT = 1 — state. The position of the unsplit 
doublet is indicated by the dashed line. 

the qualitative results are clearly the same as shown 
in Fig. 2. I t should be noted, however, that none of 
the K—\ states in the rare-earth region have been 
experimentally identified in the low-energy spectra of 
deformed nuclei, in contrast to the well-established 
appearance of the (530f) state in the heavy region. 
This fact implies that the two-quasiparticle states 
should only appear at relatively high excitation energies. 

IV. CONCLUSION 

Our results indicate that over the mass region of 
deformed nuclei it is not in general possible, assuming 
reasonable residual interactions, to obtain low-lying 
two-quasiparticle states that have the properties of the 
Kir=Q~ bands observed for example in Ra226.22 How
ever, in special cases, possibly in Ra226, it is possible to 
reproduce both the effective moment of inertia of the 
observed band and the ordering of levels [but not an 
enhanced B(E3) should it be found] with a specific 
two-quasiparticle state. In this case, our calculations 
indicate that a complicated group of odd-parity levels 
should be observed at somewhat higher energy than the 
IirK=5 — 0 state. These states should be observable 
experimentally, although the even spin states would 
not have been observed in the a~ decay experiments 

(where the odd-spin states were found) because of the 
parity selection rule in a decay. 

The recent calculations of Soloviev, Vogel, and 
Korneichuk5 indicate that it is possible to reproduce the 
energies of the observed ITTK=1~0 states in the de
formed region assuming they are octupole excitations. 
Enhanced B(E3)'$ to the 3~ states are of course ex
pected in this interpretation, although actual numbers 
have not as yet been calculated. These authors have 
also not attempted to calculate moments of inertia for 
the observed bands, so there is also no check other 
than the collective model estimate on this point. 

Our results support the general view that the IirK 
= 1 — 0 states are collective excitations, in that we find 
it generally difficult to get low-lying configurations 
which reproduce the observed moments of inertia. We 
think these results emphasize the need for clear experi
mental definition of the properties of the states of this 
type before they are assigned as collective vibrations. 
In addition, because the states whose properties we 
investigated are in the spectrum, our calculations indi
cate that the interpretation of odd-parity states, par
ticularly at the beginning of the deformed regions, may 
be more difficult than previously suspected. This is 
especially true since the levels of the bands in question 
apparently need not follow any simple angular mo
mentum ordering. 

We would like to thank the Columbia University 
Computer Center for making their facilities available 
to us. 

APPENDIX 

The single-particle Nilsson wave functions may be 
expanded in terms of eigenfunctions of total angular 
momentum, 

or in terms of eigenfunctions of orbital angular mo
mentum, 

Xa~]LJA #zAGXzAfi. 

(A is the component of orbital angular momentum 
along the symmetry axis.) In dealing with the residual 
interaction, the second expression is the more useful. 

If the residual interaction is taken to be 

V^ViridZUo+UiPM+UxFx-Vi+UiPMVi-^l, (Al) 

then the matrix elements with respect to the basis 
states given by Eqs. (1) and (2) are 

(\V\)K-O=A0&O+A1(71+A2U2+AZUS 

+ (-y£B1Ui+B2U2+BsUzl (A2) 

and 
22 It should be noted that no systematic information about the 

properties of the bands exists, at least as far as we are aware. (I V\)K^=M0UO+MIUI+M2U2+MSUZ, (A2') 
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where . and 

Ui= U1-i(Uo+3U2), (A3) T h e A,s^ B,^ a n d M,s a r e themselves matrix elements 
Ui^V 2 — \{JJ \— Uz), which may be written as 

Ao= E (Fjb/(2ft+l)2)(—)t i+vahtK-[J iai2,K+vai1> ,K-nah> ,K+V 
lili'lzWuvk 

XC(/iW; 00)C(/2/2'&; 00)C(/i/i'*; «-/*, »-«)C{hhfk\ -K-V, K+V) , 

XC(hh'k;00)C(kh'k; 00)C(fih'k\K-p, K+v)C(hh'k; -K-v, H-K) , 

Ai=—2 Y, (Vk/(2k+l)i)ah,K-,llai2,lc+yail'iK+l,aViK+M.v+l)C(l,i,'i.; ju, p)C(§, | , 1; v, —p.—p+v) 
llll' lill!k fxv p 

XC(.hh'k;00)C(hh'k; O0)C(hh'k; K-H, -K-P)C(hh'k; -K-V, P+V+H+K) , 

Ai=—2 Y, (Vk/(2k+l)2)(—))l+''ah,K-flah,K+vah>,K+l>ah>,*+„+„+,, 

XC(i, I, 1;M, P)C{h, I 1; v, - M - v - p ) C ( « 2 ' £ ; 00) 

XC(hh'k;00)C(hh'k; K-H, K+n+v+p)C{hlik; -K-V, -K-P) , (A4) 

Bi=r E (F*/(2*+l) sK,« 

X C ( / I / 2 ^ ; 0 0 ) C ( / 2 / I ^ ; 0 0 ) C ( / I / 2 ^ ; / C - M ? v-K)C(l2Wk; -K-V,H+K), 

B2= — 2TT X) (Vk/(2k+ l)2)ailtK-tlai2lK+vahr fK-pahf iK-.^v-p 
llW llW ixv pk 

XC(hhi;»,p)C(hhi;v,-n-P-v)C(hh'k;00) 

XC(hh'k;00)C(hh'k;K-p.,K-p)C(hh'k; -K-V, p+v+p.-K) , 

Bs=-2ir Y, (Vk/(2k+l)2)(—)"+'a!i,«-MOj2,«+,«(!',K-P«(2',«-M-^-P 
l\ll'I2W IJ-v pk 

XC(i, i, 1; M, P)C& *, 1; *, -M-p-P)C(hWk) 00) 

X C ( / 2 / I ^ ; 0 0 ) C ( / I / 2 ^ ; K - / X J / X + ^ + P - / C ) C ( / 2 / I ^ ; ~ / C ~ ^ / C - P ) , 

Mi= X) (Ffc/(2^+l)2)az1(K_jltaz2,K_yaz1',K-Ma^)K_v 
llW I2W livk 

XCQih'k] 00)C(/2/i^; 00)C(/i/2^; /c-/x, v-K)C(l2h'k; K-V, IX-K) , 
M 2 = - ^ 2 ? 

M 3 = - 2 £ ( * V (26+1)2) ( - )^+vaZl!K_^ir2)K_,aZl/ , ^ ^ 2 ' ,K-M-*-P 
lll\r llty p.v pk 

XC(i, I, 1;/*, p)C(|, | ; 1, v, —n—v—p) 

XC(hh'k; 00)C(hh'k; 00)C(7i/2'£; K-JU, M + " + P - « ) C ( W I - * ; K - V, - K - P ) . 

The F* and F* are matrix elements, 

Vh= K(2h+1) (2//+1).(2/,+1) (2h'+1)]1'2 (2*+1) 

X \rHnrNnRn^)Rni'n'^)Rnih{2)Rni'h'{2) J dp.PMV^-x^) (A5) 

and 

Vk= i[(2/!+1) (2/x'+1) (2/,+1) (2/,'+1)]1'2 (2£+1) 

X jrMtWdr2Rnlh(l)Rn.h' (2)R„lh(2)Rni,h> (1) f d»Pk(n)V(\ n - r , | ) . 
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As an alternative to Eq. (Al), the interaction may be expressed in terms of singlet-even and triplet-odd poten
tials QEqs. (8) and (9)]. The matrix elements of the interaction in this form are given in Eqs. (10a) and (10b). The 
A's, JB'S, and M's can be simply expressed as linear combinations of the quantities calculated in Eq. (A4), 

A0=±(Ao+A1-A2-Az) 
and _ (A6) 

At=l(3AQ-3Ai+A*-Az), 

with identical expressions for B0, B$, Mo, and M3 . 
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Effect of Quadrupole Collective Motions on the Giant Dipole Resonance* 
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The photonuclear model which includes both scalar and tensor polarizabilities is refined by considering 
small vibrations of the nuclear shape deformation. The effects of these zero-point vibrations on the structure 
of the giant dipole resonance for elastic and inelastic scattering have been investigated in an adiabatic ap
proximation. Illustrations are given. 

I. INTRODUCTION 

IT has been established experimentally that there is 
a definite correlation between the giant dipole 

resonance of the photonuclear effect and nuclear 
deformation. These resonances are appreciably narrower 
in the closed-shell nuclei than those found in nuclei 
situated between closed shells. For deformed nuclei, the 
giant resonances broaden and even split into two peaks; 
this is especially apparent in the rare-earth region where 
the deformation is particularly large. For an ellipsoidal 
nucleus having a positive intrinsic quadrupole moment, 
the higher energy resonance is observed to contain about 
twice as much area as the lower energy resonance, the 
latter being always sharper than the narrowest reso
nances found in spherical nuclei. 

These results are all in accord with the predictions of 
Okamoto1 and Danos2 that for a deformed nucleus the 
dipole oscillations would take place with two character
istic frequencies associated with the nuclear axes. The 
order of magnitude of the ratio of these frequencies 
follows from dimensional considerations, namely, coi/002 
= 0.912£2/-#i as given by a detailed hydrodynamic 
analysis, where Ri and R2 are the largest and smallest 
radii of the nucleus. Recently Fano,3 and Fuller and 
Hayward,4 using tensorial techniques, derive a more 

* This work is supported in part through U. S. Atomic Energy 
Commission Contract AT (30-1) -2098. 

f Based upon a thesis submitted by H. K. Q. to the MIT 
Physics Department in partial fulfillment of the requirements for 
the Master of Science degree, August 1963. 
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3 U. Fano, Natl. Bur. Std. (U. S.) Tech. Note 83, (1960). 
4 E. Fuller and E. Hayward, Nucl. Phys. 30, 613 (1962). 

general theory which takes into account the dependence 
of the photon scattering upon the spin orientation of the 
nucleus with respect to the wave vector of the photon, 
and thus includes three possible polarizability contri
butions : scalar, vector, and tensor. 

Many experimental absorption data of strongly 
deformed nuclei seem to agree as well with the three-
resonance theory first proposed by Inopin.5 On the 
basis of the hydrodynamic model within the framework 
of the theory of axially asymmetric nuclei proposed by 
Davidov and Filippov, Inopin showed that the res
onance energies Ei corresponding to the density oscilla
tions along the three different axes are proportional to 
1/Ri. Any experimental results for deformed nuclei can 
thus be interpreted by a three-line fit, for which two 
resonance energies Ei and E2 may be allowed to 
approach each other at a common value Ei2. However, 
we know that a nonaxial deformation is generated by 
shape vibrations away from equilibrium axial sym
metry, so called y vibrations, and it seems sensible to 
assume that these vibrations might make more or less 
important contributions to the photoeffect resonance.6 

Those considerations motivate us to include, if only 
for the sake of self-consistency of the collective model, 
zero-point vibrations of the nuclear shape. Conversely 
a successful interpretation of some aspects of the 
photonuclear effect on this basis might be useful in the 
study of nuclear structure, in revealing properties of 
collective levels and estimates of the zero-point vibra-

5 E. Inopin, Zh. Eksperim i Teor. Fiz. 38, 992 (1960) [English 
transl.: Soviet Phys.—JETP 11, 714 (I960)]. 

6 P. A. Tipler, P. Axel, N. Stein, and D. C. Sutton, Phys. Rev. 
129, 2096 (1963). 


